Главная страница

 

ДОМ
ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Информатика и программирование
Информационные технологии
Компьютерные сети
Информационная безопасность
Как заработать в сети Интернет
Информационные технологии
CASE-технологии
Программные средства
Низкоуровневое программирование
Модели данных
Структуры данных
Структуры данных

1. CТРУКТУРЫ ДАННЫХ И АЛГОРИТМЫ

2. ПРОСТЫЕ СТРУКТУРЫ ДАННЫХ

3. СТАТИЧЕСКИЕ СТРУКТУРЫ ДАННЫХ

4. ПОЛУСТАТИЧЕСКИЕ СТРУКТУРЫ ДАННЫХ

5. ДИНАМИЧЕСКИЕ СТРУКТУРЫ ДАННЫХ. СВЯЗНЫЕ СПИСКИ

return_links(); ?>

5. ДИНАМИЧЕСКИЕ СТРУКТУРЫ ДАННЫХ. СВЯЗНЫЕ СПИСКИ

5.1. Связное представление данных в памяти

Динамические структуры по определению характеризуются отсутствием физической смежности элементов структуры в памяти непостоянством и непредсказуемостью размера (числа элементов) структуры в процессе ее обработки. В этом разделе рассмотрены особенности динамических структур, определяемые их первым характерным свойством. Особенности, связанные со вторым свойством рассматриваются в последнем разделе данной главы.

Поскольку элементы динамической структуры располагаются по непредсказуемым адресам памяти, адрес элемента такой структуры не может быть вычислен из адреса начального или предыдущего элемента. Для установления связи между элементами динамической структуры используются указатели, через которые устанавливаются явные связи между элементами. Такое представление данных в памяти называется связным. Элемент динамической структуры состоит из двух полей:

  • информационного поля или поля данных, в котором содержатся те данные, ради которых и создается структура; в общем случае информационное поле само является интегрированной структурой - вектором, массивом, записью и т.п.;
  • поле связок, в котором содержатся один или несколько указателей, связывающий данный элемент с другими элементами структуры;

Когда связное представление данных используется для решения прикладной задачи, для конечного пользователя "видимым" делается только содержимое информационного поля, а поле связок используется только программистом-разработчиком.

Достоинства связного представления данных - в возможности обеспечения значительной изменчивости структур;

  • размер структуры ограничивается только доступным объемом машинной памяти;
  • при изменении логической последовательности элементов структуры требуется не перемещение данных в памяти, а только коррекция указателей.

Вместе с тем связное представление не лишено и недостатков, основные из которых:

  • работа с указателями требует, как правило, более высокой квалификации от программиста;
  • на поля связок расходуется дополнительная память;
  • доступ к элементам связной структуры может быть менее эффективным по времени.

Последний недостаток является наиболее серьезным и именно им ограничивается применимость связного представления данных. Если в смежном представлении данных для вычисления адреса любого элемента нам во всех случаях достаточно было номера элемента и информации, содержащейся в дескрипторе структуры, то для связного представления адрес элемента не может быть вычислен из исходных данных. Дескриптор связной структуры содержит один или несколько указателей, позволяющих войти в структуру, далее поиск требуемого элемента выполняется следованием по цепочке указателей от элемента к элементу. Поэтому связное представление практически никогда не применяется в задачах, где логическая структура данных имеет вид вектора или массива - с доступом по номеру элемента, но часто применяется в задачах, где логическая структура требует другой исходной информации доступа (таблицы, списки, деревья и т.д.).


5.2. Связные линейные списки

Списком называется упорядоченное множество, состоящее из переменного числа элементов, к которым применимы операции включения, исключения. Список, отражающий отношения соседства между элементами, называется линейным. Логические списки мы уже рассматривали в главе 4, но там речь шла о полустатических структурах данных и на размер списка накладывались ограничения. Если ограничения на длину списка не допускаются, то список представляется в памяти в виде связной структуры. Линейные связные списки являются простейшими динамическими структурами данных.

Графически связи в списках удобно изображать с помощью стрелок. Если компонента не связана ни с какой другой, то в поле указателя записывают значение, не указывающее ни на какой элемент. Такая ссылка обозначается специальным именем - nil.


5.2.1. Машинное представление связных линейных списков

На рис. 5.1 приведена структура односвязного списка. На нем поле INF - информационное поле, данные, NEXT - указатель на следующий элемент списка. Каждый список должен иметь особый элемент, называемый указателем начала списка или головой списка, который обычно по формату отличен от остальных элементов. В поле указателя последнего элемента списка находится специальный признак nil, свидетельствующий о конце списка.

Структура односвязного списка

Рис.5.1. Структура односвязного списка

Однако, обработка односвязного списка не всегда удобна, так как отсутствует возможность продвижения в противоположную сторону. Такую возможность обеспечивает двухсвязный список, каждый элемент которого содержит два указателя: на следующий и предыдущий элементы списка. Структура линейного двухсвязного списка приведена на рис. 5.2, где поле NEXT - указатель на следующий элемент, поле PREV - указатель на предыдущий элемент. В крайних элементах соответствующие указатели должны содержать nil, как и показано на рис. 5.2.

Для удобства обработки списка добавляют еще один особый элемент - указатель конца списка. Наличие двух указателей в каждом элементе усложняет список и приводит к дополнительным затратам памяти, но в то же время обеспечивает более эффективное выполнение некоторых операций над списком.

Структура двухсвязного списка

Рис.5.2. Структура двухсвязного списка

Разновидностью рассмотренных видов линейных списков является кольцевой список, который может быть организован на основе как односвязного, так и двухсвязного списков. При этом в односвязном списке указатель последнего элемента должен указывать на первый элемент; в двухсвязном списке в первом и последнем элементах соответствующие указатели переопределяются, как показано на рис.5.3.

При работе с такими списками несколько упрощаются некоторые процедуры, выполняемые над списком. Однако, при просмотре такого списка следует принять некоторых мер предосторожности, чтобы не попасть в бесконечный цикл.

Структура кольцевого двухсвязного списка

Рис.5.3. Структура кольцевого двухсвязного списка

В памяти список представляет собой совокупность дескриптора и одинаковых по размеру и формату записей, размещенных произвольно в некоторой области памяти и связанных друг с другом в линейно упорядоченную цепочку с помощью указателей. Запись содержит информационные поля и поля указателей на соседние элементы списка, причем некоторыми полями информационной части могут быть указатели на блоки памяти с дополнительной информацией, относящейся к элементу списка. Дескриптор списка реализуется в виде особой записи и содержит такую информацию о списке, как адрес начала списка, код структуры, имя списка, текущее число элементов в списке, описание элемента и т.д., и т.п. Дескриптор может находиться в той же области памяти, в которой располагаются элементы списка, или для него выделяется какое-нибудь другое место.


5.2.2. Реализация операций над связными линейными списками

Ниже рассматриваются некоторые простые операции над линейными списками. Выполнение операций иллюстрируется в общем случае рисунками со схемами изменения связей и программными примерами.

На всех рисунках сплошными линиями показаны связи, имевшиеся до выполнения и сохранившиеся после выполнения операции. Пунктиром показаны связи, установленные при выполнении операции. Значком 'x' отмечены связи, разорванные при выполнении операции. Во всех операциях чрезвычайно важна последовательность коррекции указателей, которая обеспечивает корректное изменение списка, не затрагивающее другие элементы. При неправильном порядке коррекции легко потерять часть списка. Поэтому на рисунках рядом с устанавливаемыми связями в скобках показаны шаги, на которых эти связи устанавливаются.

В программных примерах подразумеваются определенными следующие типы данных:

  • любая структура информационной части списка:
    type data = ...;
  • элемент односвязного списка (sll - single linked list):
     type
       sllptr = ^slltype; { указатель в односвязном списке }
       slltype = record { элемент односвязного списка }
         inf : data;    { информационная часть }
         next : sllptr; { указатель на следующий элемент }
         end;
  • элемент двухсвязного списка (dll - double linked list):
     type
       dllptr = ^dlltype;     { указатель в двухсвязном списке }
       dlltype = record { элемент односвязного списка }
         inf : data;    { информационная часть }
         next : sllptr; { указатель на следующий элемент (вперед) }
         prev : sllptr; { указатель на предыдущий элемент (назад) }
         end;

Словесные описания алгоритмов даны в виде комментариев к программным примерам.

В общем случае примеры должны были бы показать реализацию каждой операции для списков: односвязного линейного, одсвязного кольцевого, двухсвязного линейного, двухсвязного кольцевого. Объем нашего издания не позволяет привести полный набор примеров, разработку недостающих примеров мы предоставляем читателю.

Перебор элементов списка.

Эта операция, возможно, чаще других выполняется над линейными списками. При ее выполнении осуществляется последовательный доступ к элементам списка - ко всем до конца списка или до нахождения искомого элемента.

Алгоритм перебора для односвязного списка представляется программным примером 5.1.

 {==== Программный пример 5.1 ====}
 { Перебор 1-связного списка }
 Procedure LookSll(head : sllptr);
  { head - указатель на начало списка }
  var cur : sllptr;  { адрес текущего элемента }
   begin
   cur:=head; { 1-й элемент списка назначается текущим }
   while cur <> nil do begin   
     < обработка c^.inf >
     {обрабатывается информационная часть того эл-та, 
      на который указывает cur.
      Обработка может состоять в:
      
  • печати содержимого инф.части;
  • модификации полей инф.части;
  • сравнения полей инф.части с образцом при поиске по ключу;
  • подсчете итераций цикла при поиске по номеру;
  • и т.д., и т.п.
} cur:=cur^.next;
{ из текущего эл-та выбирается указатель на следующий эл-т и для следующей итерации следующий эл-т становится текущим; если текущий эл-т был последний, то его поле next содержит пустой указатель и, т.обр. в cur запишется nil, что приведет к выходу из цикла при проверке условия while } end; end;

В двухсвязном списке возможен перебор как в прямом направлении (он выглядит точно так же, как и перебор в односвязном списке), так и в обратном. В последнем случае параметром процедуры должен быть tail - указатель на конец списка, и переход к следующему элементу должен осуществляться по указателю назад:

           cur:=cur^.prev; 

В кольцевом списке окончание перебора должно происходить не по признаку последнего элемента - такой признак отсутствует, а по достижению элемента, с которого начался перебор. Алгоритмы перебора для двусвязного и кольцевого списка мы оставляем читателю на самостоятельную разработку.

Вставка элемента в список.

Вставка элемента в середину односвязного списка показана на рис.5.4 и в примере 5.2.

Вставка элемента

Рис.5.4. Вставка элемента в середину 1-связного списка

  {==== Программный пример 5.2 ====}
 { Вставка элемента в середину 1-связного списка }
 Procedure InsertSll(prev : sllptr; inf : data);
 { prev - адрес предыдущего эл-та; inf - данные нового эл-та }
  var cur : sllptr;  { адрес нового эл-та }
   begin
   { выделение памяти для нового эл-та и запись в его инф.часть }
   New(cur); cur^.inf:=inf;
   cur^.next:=prev^.next; { эл-т, следовавший за предыдущим теперь
 будет следовать за новым }
   prev^.next:=cur;       { новый эл-т следует за предыдущим }
 end;

Рисунок 5.5 представляет вставку в двухсвязный список.

Вставка элемента в середину 2-связного списка

Рис.5.5. Вставка элемента в середину 2-связного списка

Приведенные примеры обеспечивают вставку в середину списка, но не могут быть применены для вставки в начало списка. При последней должен модифицироваться указатель на начало списка, как показано на рис.5.6.

Вставка элемента в начало 1-связного списка

Рис.5.6. Вставка элемента в начало 1-связного списка

Программный пример 5.3 представляет процедуру, выполняющую вставку элемента в любое место односвязного списка.

 {==== Программный пример 5.3 ====}
 { Вставка элемента в любое место 1-связного списка }
 Procedure InsertSll
   var head : sllptr; { указатель на начало списка, может измениться в
 процедуре, если head=nil - список пустой }
       prev : sllptr; { указатель на эл-т, после к-рого делается вставка,
 если prev-nil - вставка перед 1-ым эл-том }
       inf : data { - данные нового эл-та }
  var cur : sllptr;  { адрес нового эл-та }
   begin
   { выделение памяти для нового эл-та и запись в его инф.часть }
   New(cur); cur^.inf:=inf;
   if prev <> nil then begin { если есть предыдущий эл-т - вставка в
 середину списка, см. прим.5.2 }
     cur^.next:=prev^.next;  prev^.next:=cur;
     end
   else begin { вставка в начало списка }
     cur^.next:=head; { новый эл-т указывает на бывший 1-й эл-т списка;
 если head=nil, то новый эл-т будет и последним эл-том списка }
     head:=cur; { новый эл-т становится 1-ым в списке, указатель на
 начало теперь указывает на него }
  end; end;

Удаление элемента из списка.

Удаление элемента из односвязного списка показано на рис.5.7.

Удаление элемента из 1-связного списка

Рис.5.7. Удаление элемента из 1-связного списка

Очевидно, что процедуру удаления легко выполнить, если известен адрес элемента, предшествующего удаляемому (prev на рис.5.7.а). Мы, однако, на рис. 5.7 и в примере 5.4 приводим процедуру для случая, когда удаляемый элемент задается своим адресом (del на рис.5.7). Процедура обеспечивает удаления как из середины, так и из начала списка.

 {==== Программный пример 5.4 ====}
 { Удаление элемента из любого места 1-связного списка }
 Procedure DeleteSll(
   var head : sllptr; { указатель на начало списка, может
                        измениться в процедуре }
       del : sllptr   { указатель на эл-т, к-рый удаляется }  );
  var prev : sllptr;  { адрес предыдущего эл-та }
   begin
   if head=nil then begin { попытка удаления из пустого списка 
   асценивается как ошибка (в последующих примерах этот случай 
   учитываться на будет) }
       Writeln('Ошибка!'); Halt;
       end;
   if del=head then { если удаляемый эл-т - 1-й в списке, то 
следующий за ним становится первым }
     head:=del^.next
   else begin { удаление из середины списка }

{ приходится искать эл-т, предшествующий удаляемому; поиск производится перебором списка с самого его начала, пока не будет найдет эл-т, поле next к-рого совпадает с адресом удаляемого элемента }

     prev:=head^.next;
     while (prev^.next<>del) and (prev^.next<>nil) do
       prev:=prev^.next;
     if prev^.next=nil then begin

{ это случай, когда перебран весь список, но эл-т не найден, он отсутствует в списке; расценивается как ошибка (в последующих примерах этот случай учитываться на будет) }

       Writeln('Ошибка!'); Halt;
       end;
     prev^.next:=del^.next; { предыдущий эл-т теперь указывает
на следующий за удаляемым }
     end;
   { элемент исключен из списка, теперь можно освободить 
занимаемую им память }
   Dispose(del);
 end;

Удаление элемента из двухсвязного списка требует коррекции большего числа указателей, как показано на рис.5.8.

Удаление элемента из 2-связного списка

Рис.5.8. Удаление элемента из 2-связного списка

Процедуру удаления элемента из двухсвязного списка окажется даже проще, чем для односвязного, так как в ней не нужен поиск предыдущего элемента, он выбирается по указателю назад.

Перестановка элементов списка.

Изменчивость динамических структур данных предполагает не только изменения размера структуры, но и изменения связей между элементами. Для связных структур изменение связей не требует пересылки данных в памяти, а только изменения указателей в элементах связной структуры. В качестве примера приведена перестановка двух соседних элементов списка. В алгоритме перестановки в односвязном списке (рис.5.9, пример 5.5) исходили из того, что известен адрес элемента, предшествующего паре, в которой производится перестановка. В приведенном алгоритме также не учитывается случай перестановки первого и второго элементов.

Перестановка соседних элементов 1-связного списка

Рис.5.9. Перестановка соседних элементов 1-связного списка

 {==== Программный пример 5.5 ====}
 { Перестановка двух соседних элементов в 1-связном списке }
 Procedure ExchangeSll(
       prev : sllptr   { указатель на эл-т, предшествующий
 переставляемой паре }  );
  var p1, p2 : sllptr;  { указатели на эл-ты пары }
   begin
   p1:=prev^.next;     { указатель на 1-й эл-т пары }
   p2:=p1^.next;       { указатель на 2-й эл-т пары }
   p1^.next:=p2^.next; { 1-й элемент пары теперь указывает на
     следующий за парой }
   p2^.next:=p1;       { 1-й эл-т пары теперь следует за 2-ым }
   prev^.next:=p2;     { 2-й эл-т пары теперь становится 1-ым }
 end;

В процедуре перестановки для двухсвязного списка (рис.5.10.) нетрудно учесть и перестановку в начале/конце списка.

Копирование части списка.

При копировании исходный список сохраняется в памяти, и создается новый список. Информационные поля элементов нового списка содержат те же данные, что и в элементах старого списка, но поля связок в новом списке совершенно другие, поскольку элементы нового списка расположены по другим адресам в памяти. Существенно, что операция копирования предполагает дублирование данных в памяти. Если после создания копии будут изменены данные в исходном списке, то изменение не будет отражено в копии и наоборот.

Перестановка соседних элементов 2-связного списка

Рис.5.10. Перестановка соседних элементов 2-связного списка

Копирование для односвязного списка показано в программном примере 5.6.

 {==== Программный пример 5.6 ====}
{ Копирование части 1-связного списка. head - указатель на 
начало копируемой части; num - число эл-тов. Ф-ция возвращает
указатель на список-копию }
 Function CopySll ( head : sllptr; num : integer) : sllptr;
  var cur, head2, cur2, prev2 : sllptr;
  begin
    if head=nil then { исходный список пуст - копия пуста }
      CopySll:=nil
    else begin
      cur:=head; prev2:=nil;
      { перебор исходного списка до конца или по счетчику num }
      while (num>0) and (cur<>nil) do begin
  { выделение памяти для эл-та выходного списка и запись в него
 информационной части }
        New(cur2); cur2^.inf:=cur^.inf;
  { если 1-й эл-т выходного списка - запоминается указатель на
 начало, иначе - записывается указатель в предыдущий элемент }
        if prev2<>nil then prev2^.next:=cur2 else head2:=cur2;
        prev2:=cur2;  { текущий эл-т становится предыдущим }
        cur:=cur^.next;  { продвижение по исходному списку }
        num:=num-1;   { подсчет эл-тов }
        end;
      cur2^.next:=nil; { пустой указатель - в последний эл-т
 выходного списка }
      CopySll:=head2;  { вернуть указатель на начало вых.списка }
  end;   end; 

Слияние двух списков.

Операция слияния заключается в формировании из двух списков одного - она аналогична операции сцепления строк. В случае односвязного списка, показанном в примере 5.7, слияние выполняется очень просто. Последний элемент первого списка содержит пустой указатель на следующий элемент, этот указатель служит признаком конца списка. Вместо этого пустого указатель в последний элемент первого списка заносится указатель на начало второго списка. Таким образом, второй список становится продолжением первого.

 {==== Программный пример 5.7 ====}
 { Слияние двух списков. head1 и head2 - указатели на начала
 списков. На результирующий список указывает head1 }
 Procedure Unite (var head1, head2 : sllptr);
  var cur : sllptr;
  begin          { если 2-й список пустой - нечего делать }
    if head2<>nil then begin
      { если 1-й список пустой, выходным списком будет 2-й }
    if head1=nil then head1:=head2
    else     { перебор 1-го списка до последнего его эл-та }
     begin  cur:=head1;
      while cur^.next<>nil do cur:=cur^.next;
      { последний эл-т 1-го списка указывает на начало 2-го }
      cur^.next:=head2;
     end;   head2:=nil; { 2-й список аннулируется }
   end; end;

5.2.3. Применение линейных списков

Линейные списки находят широкое применение в приложениях, где непредсказуемы требования на размер памяти, необходимой для хранения данных; большое число сложных операций над данными, особенно включений и исключений. На базе линейных списков могут строится стеки, очереди и деки. Представление очереди с помощью линейного списка позволяет достаточно просто обеспечить любые желаемые дисциплины обслуживания очереди. Особенно это удобно, когда число элементов в очереди трудно предсказуемо.

В программном примере 5.8 показана организация стека на односвязном линейном списке. Это пример функционально аналогичен примеру 4.1 с той существенной разницей, что размер стека здесь практически неограничен.

Стек представляется как линейный список, в котором включение элементов всегда производятся в начала списка, а исключение - также из начала. Для представления его нам достаточно иметь один указатель - top, который всегда указывает на последний записанный в стек элемент. В исходном состоянии (при пустом стеке) указатель top - пустой. Процедуры StackPush и StackPop сводятся к включению и исключению элемента в начало списка. Обратите внимание, что при включении элемента для него выделяется память, а при исключении - освобождается. Перед включением элемента проверяется доступный объем памяти, и если он не позволяет выделить память для нового элемента, стек считается заполненным. При очистке стека последовательно просматривается весь список и уничтожаются его элементы. При списковом представлении стека оказывается непросто определить размер стека. Эта операция могла бы потребовать перебора всего списка с подсчета числа элементов. Чтобы избежать последовательного перебора всего списка мы ввели дополнительную переменную stsize, которая отражает текущее число элементов в стеке и корректируется при каждом включении/исключении.

 {==== Программный пример 5.8 ====}
 { Стек на 1-связном линейном списке }
 unit Stack;
 Interface
 type data = ...; { эл-ты могут иметь любой тип }
 Procedure StackInit;
 Procedure StackClr;
 Function StackPush(a : data) : boolean;
 Function StackPop(Var a : data) : boolean;
 Function StackSize : integer;
 Implementation
 type stptr = ^stit;  { указатель на эл-т списка }
      stit = record   { элемент списка }
        inf : data;   { данные }
        next: stptr;  { указатель на следующий эл-т }
        end;
 Var top : stptr; { указатель на вершину стека }
     stsize : longint;  { размер стека }
 {** инициализация - список пустой }
 Procedure StackInit;
   begin   top:=nil; stsize:=0;  end; { StackInit }
 {** очистка - освобождение всей памяти }
 Procedure StackClr;
  var x : stptr;
   begin   { перебор эл-тов до конца списка и их уничтожение }
   while top<>nil do
     begin  x:=top; top:=top^.next; Dispose(x);  end;
   stsize:=0;
 end; { StackClr }
 Function StackPush(a: data) : boolean;   { занесение в стек }
  var x : stptr;
   begin      { если нет больше свободной памяти - отказ }
   if MaxAvail < SizeOf(stit) then StackPush:=false
   else   { выделение памяти для эл-та и заполнение инф.части }
     begin  New(x); x^.inf:=a;
                { новый эл-т помещается в голову списка }
       x^.next:=top; top:=x;
       stsize:=stsize+1; { коррекция размера }
       StackPush:=true;
     end;
 end; { StackPush }
 Function StackPop(var a: data) : boolean; { выборка из стека }
  var x : stptr;
   begin
   { список пуст - стек пуст }
   if top=nil then StackPop:=false
   else begin
     a:=top^.inf; { выборка информации из 1-го эл-та списка }
     { 1-й эл-т исключается из списка, освобождается память }
     x:=top; top:=top^.next; Dispose(top);
     stsize:=stsize-1; { коррекция размера }
     StackPop:=true;
 end;  end; { StackPop }
 Function StackSize : integer;  { определение размера стека }
   begin   StackSize:=stsize;   end; { StackSize }
 END.

Программный пример для организация на односвязном линейном списке очереди FIFI разработайте самостоятельно. Для линейного списка, представляющего очередь, необходимо будет сохранять: top - на первый элемент списка, и bottom - на последний элемент.

Линейные связные списки иногда используются также для представления таблиц - в тех случаях, когда размер таблицы может существенно изменяться в процессе ее существования. Однако, то обстоятельство, что доступ к элементам связного линейного списка может быть только последовательным, не позволяет применить к такой таблице эффективный двоичный поиск, что существенно ограничивает их применимость. Поскольку упорядоченность такой таблицы не может помочь в организации поиска, задачи сортировки таблиц, представленных линейными связными списками, возникают значительно реже, чем для таблиц в векторном представлении. Однако, в некоторых случаях для таблицы, хотя и не требуется частое выполнение поиска, но задача генерации отчетов требует расположения записей таблицы в некотором порядке. Для упорядочения записей такой таблицы применимы любые алгоритмы из описанных нами в разделе 3.9. Некоторые алгоритмы, возможно, потребуют каких-либо усложнений структуры, например, быструю сортировку Хоара целесообразно проводить только на двухсвязном списке, в цифровой сортировке удобно создавать промежуточные списке для цифровых групп и т.д. Мы приведем два простейших примера сортировки односвязного линейного списка. В обоих случаях мы предполагаем, что определены типы данных:

     type lptr = ^item; { указатель на элемент списка }
          item = record    { элемент списка }
            key : integer; { ключ }
            inf : data;    { данные }
            next: lptr;    { указатель на элемент списка }
            end; 

В обоих случаях сортировка ведется по возрастанию ключей. В обоих случаях параметром функции сортировки является указатель на начало неотсортированного списка, функция возвращает указатель на начало отсортированного списка. Прежний, несортированный список перестает существовать.

Пример 5.9 демонстрирует сортировку выборкой. Указатель newh является указателем на начало выходного списка, исходно - пустого. Во входном списке ищется максимальный элемент. Найденный элемент исключается из входного списка и включается в начало выходного списка. Работа алгоритма заканчивается, когда входной список станет пустым. Обратим внимание читателя на несколько особенностей алгоритма. Во-первых, во входном списке ищется всякий раз не минимальный, а максимальный элемент. Поскольку элемент включается в начало выходного списка (а не в конец выходного множества, как было в программном примере 3.7), элементы с большими ключами оттесняются к концу выходного списка и последний, таким образом, оказывается отсортированным по возрастанию ключей. Во-вторых, при поиске во входном списке сохраняется не только адрес найденного элемента в списке, но и адрес предшествующего ему в списке эле- мента - это впоследствии облегчает исключение элемента из списка (вспомните пример 5.4). В-третьих, обратите внимание на то, что у нас не возникает никаких проблем с пропуском во входном списке тех элементов, которые уже выбраны - они просто исключены из входной структуры данных.

 {==== Программный пример 5.9 ====}
 { Сортировка выборкой на 1-связном списке }
 Function Sort(head : lptr) : lptr;
  var newh, max, prev, pmax, cur : lptr;
   begin        newh:=nil;         { выходной список - пустой }
   while head<>nil do { цикл, пока не опустеет входной список }
     begin   max:=head; prev:=head; { нач.максимум - 1-й эл-т }
     cur:=head^.next;     { поиск максимума во входном списке }
     while cur<>nil do begin
       if cur^.key>max^.key then begin
{ запоминается адрес максимума и адрес предыдущего эл-та }
         max:=cur; pmax:=prev;
     end;    prev:=cur; cur:=cur^.next; { движение по списку }
       end;        { исключение максимума из входного списка }
     if max=head then head:=head^.next
     else pmax^.next:=max^.next;
     { вставка в начало выходного списка }
     max^.next:=newh; newh:=max;
   end;  Sort:=newh;
  end;

В программном примере 5.10 - иллюстрации сортировки вставками - из входного списка выбирается (и исключается) первый элемент и вставляется в выходной список "на свое место" в соответствии со значениями ключей. Сортировка включением на векторной структуре в примере 3.11 требовала большого числа перемещений элементов в памяти. Обратите внимание на то, что в двух последних примерах пересылок данных не происходит, все записи таблиц остаются на своих местах в памяти, меняются только связи между ними - указатели.

 {==== Программный пример 5.10 ====}
 { Сортировка вставками на 1-связном списке }
 type data = integer;
 Function Sort(head : lptr) : lptr;
  var newh, cur, sel : lptr;
   begin
   newh:=nil;  { выходной список - пустой }
   while head <> nil do begin { цикл, пока не опустеет входной список }
     sel:=head;  { эл-т, который переносится в выходной список }
     head:=head^.next;         { продвижение во входном списке }
     if (newh=nil) or (sel^.key < newh^.key) then begin
{выходной список пустой или элемент меньше 1-го-вставка в начало}
     sel^.next:=newh; newh:=sel;   end
     else begin                { вставка в середину или в конец }
       cur:=newh;
{ до конца выходного списка или пока ключ следующего эл-та не будет
 больше вставляемого }
       while (cur^.next <> nil) and (cur^.next^.key < sel^.key) do
         cur:=cur^.next;
       { вставка в выходной список после эл-та cur }
       sel^.next:=cur^.next;    cur^.next:=sel;
      end;   end;   Sort:=newh;
  end;

5.3. Мультисписки

В программных системах, обрабатывающих объекты сложной структуры, могут решаться разные подзадачи, каждая из которых требует, возможно, обработки не всего множества объектов, а лишь какого-то его подмножества. Так, например, в автоматизированной системе учета лиц, пострадавших вследствие аварии на ЧАЭС, каждая запись об одном пострадавшем содержит более 50 полей в своей информационной части. Решаемые же автоматизированной системой задачи могут потребовать выборки, например:

  • участников ликвидации аварии;
  • переселенцев из зараженной зоны;
  • лиц, состоящих на квартирном учете;
  • лиц с заболеваниями щитовидной железы;
  • и т.д., и т.п.

Пример мультисписка

Рис.5.11. Пример мультисписка

Для того, чтобы при выборке каждого подмножества не выполнять полный просмотр с отсеиванием записей, к требуемому подмножеству не относящихся, в каждую запись включаются дополнительные поля ссылок, каждое из которых связывает в линейный список элементы соответствующего подмножества. В результате получается многосвязный список или мультисписок, каждый элемент которого может входить одновременно в несколько односвязных списков. Пример такого мультисписка для названной нами автоматизированной системы показан на рис.5.11.

К достоинствам мультисписков помимо экономии памяти (при множестве списков информационная часть существует в единственном экземпляре) следует отнести также целостность данных - в том смысле, что все подзадачи работают с одной и той же версией информационной части и изменения в данных, сделанные одной подзадачей немедленно становятся доступными для другой подзадачи.

Каждая подзадача работает со своим подмножеством как с линейным списком, используя для этого определенное поле связок. Специфика мультисписка проявляется только в операции исключения элемента из списка. Исключение элемента из какого-либо одного списка еще не означает необходимости удаления элемента из памяти, так как элемент может оставаться в составе других списков. Память должна освобождаться только в том случае, когда элемент уже не входит ни в один из частных списков мультисписка. Обычно задача удаления упрощается тем, что один из частных списков является главным - в него обязательно входят все имеющиеся элементы. Тогда исключение элемента из любого неглавного списка состоит только в переопределении указателей, но не в освобождении памяти. Исключение же из главного списка требует не только освобождения памяти, но и переопределения указателей как в главном списке, так и во всех неглавных списках, в которые удаляемый элемент входил.


5.4. Нелинейные разветвленные списки

5.4.1. Основные понятия

Нелинейным разветвленным списком является список, элементами которого могут быть тоже списки. В разделе 5.2 мы рассмотрели двухсвязные линейные списки. Если один из указателей каждого элемента списка задает порядок обратный к порядку, устанавливаемому другим указателем, то такой двусвязный список будет линейным. Если же один из указателей задает порядок произвольного вида, не являющийся обратным по отношению к порядку, устанавливаемому другим указателем, то такой список будет нелинейным.

В обработке нелинейный список определяется как любая последовательность атомов и списков (подсписков), где в качестве атома берется любой объект, который при обработке отличается от списка тем, что он структурно неделим.

Если мы заключим списки в круглые скобки, а элементы списков разделим запятыми, то в качестве списков можно рассматривать такие последовательности:

          (a,(b,c,d),e,(f,g))
          ( )
          ((a))

Первый список содержит четыре элемента: атом a, список (b,c,d) (содержащий в свою очередь атомы b,c,d), атом e и список (f,g), элементами которого являются атомы f и g. Второй список не содержит элементов, тем не менее нулевой список, в соответствии с нашим определением является действительным списком. Третий список состоит из одного элемента: списка (a), который в свою очередь содержит атом а.

Другой способ представления, часто используемый для иллюстрации списков, - графические схемы, аналогичен способу представления, применяемому при изображении линейных списков. Каждый элемент списка обозначается прямоугольником; стрелки или указатели показывают, являются ли прямоугольники элементами одного и того же списка или элементами подсписка. Пример такого представления дан на рис.5.12.

представление разветвленного списка

Рис.5.12. Схематическое представление разветвленного списка

Разветвленные списки описываются тремя характеристиками: порядком, глубиной и длиной.

Порядок. Над элементами списка задано транзитивное отношение, определяемое последовательностью, в которой элементы появляются внутри списка. В списке (x,y,z) атом x предшествует y, а y предшествует z. При этом подразумевается, что x предшествует z. Данный список не эквивалентен списку (y,z,x). При представлении списков графическими схемами порядок определяется горизонтальными стрелками. Горизонтальные стрелки истолковываются следующим образом: элемент из которого исходит стрелка,предшествует элементу, на который она указывает.

Глубина. Это максимальный уровень, приписываемый элементам внутри списка или внутри любого подсписка в списке. Уровень элемента предписывается вложенностью подсписков внутри списка, т.е.числом пар круглых скобок, окаймляющих элемент. В списке, изображенном на рис.5.12), элементы a и e находятся на уровне 1, в то время как оставшиеся элементы - b, c, d, f и g имеют уровень 2. Глубина входного списка равна 2. При представлении списков схемами концепции глубины и уровня облегчаются для понимания, если каждому атомарному или списковому узлу приписать некоторое число l. Значение l для элемента x, обозначаемое как l(x), является числом вертикальных стрелок, которое необходимо пройти для того, чтобы достичь данный элемент из первого элемента списка. На рис.5.12 l(a)=0, l(b)=1 и т.д. Глубина списка является максимальным значением уровня среди уровней всех атомов списка.

Длина - это число элементов уровня 1 в списке. Например, длина списка на рис.5.12 равна 3.

Типичный пример применения разветвленного списка - представление последнего алгебраического выражения в виде списка. Алгебраическое выражение можно представить в виде последовательности элементарных двухместных операций вида:

       < операнд 1 > < знак операции > < операнд 2 >
Схема списка

Рис.5.13. Схема списка, представляющего алгебраическое выражение

     Выражение:
                 (a+b)*(c-(d/e))+f
будет вычисляться в следующем порядке:
        a+b
        d/e
        c-(d/e)
        (a+b)*(c-d/e)
        (a+b)*(c-d/e)+f

При представлении выражения в виде разветвленного списка каждая тройка "операнд-знак-операнд" представляется в виде списка, причем, в качестве операндов могут выступать как атомы - переменные или константы, так и подсписки такого же вида. Скобочное представление нашего выражения будет иметь вид:

       (((a,+,b),*,(c,-,(d,/,e)),+,f)

Глубина этого списка равна 4, длина - 3.


5.4.2. Представление списковых структур в памяти.

В соответствии со схематичным изображением разветвленных списков типичная структура элемента такого списка в памяти должна быть такой, как показано на рис.5.14.

Структура элемента разветвленного списка

Рис.5.14. Структура элемента разветвленного списка

Элементы списка могут быть двух видов: атомы - содержащие данные и узлы - содержащие указатели на подсписки. В атомах не используется поле down элемента списка, а в узлах - поле data. Поэтому логичным является совмещение этих двух полей в одно, как показано на рис.5.15.

Структура элемента

Рис.5.15. Структура элемента разветвленного списка

Поле type содержат признак атом/узел, оно может быть 1-битовым. Такой формат элемента удобен для списков, атомарная информация которых занимает небольшой объем памяти. В этом случае теряется незначительный объем памяти в элементах списка, для которых не требуется поля data. В более общем случае для атомарной информации необходим относительно большой объем памяти. Наиболее распространенный в данной ситуации формат структуры узла представленный на рис.5.16.

Структура элемента разветвленного списка

Рис. 5.16. Структура элемента разветвленного списка

В этом случае указатель down указывает на данные или на подсписок. Поскольку списки могут составляться из данных различных типов, целесообразно адресовать указателем down не непосредственно данные, а их дескриптор, в котором может быть описан тип данных, их длина и т.п. Само описание того, является ли адресуемый указателем данных объект атомом или узлом также может находиться в этом дескрипторе. Удобно сделать размер дескриптора данных таким же, как и элемента списка. В этом случае размер поля type может быть расширен, например, до 1 байта и это поле может индицировать не только атом/подсписок, но и тип атомарных данных, поле next в дескрипторе данных может использоваться для представления еще какой-то описательной информации, например, размера атома. На рис.5.17 показано представление элементами такого формата списка: (КОВАЛЬ,(12,7,53),d). Первая (верхняя) строка на рисунке представляет элементы списка, вторая - элементы подсписка, третья - дескрипторы данных, четвертая - сами данные. В поле type каждого элемента мы использовали коды: n - узел, S - атом, тип STRING, I - атом, тип INTEGER, C - атом, тип CHAR.

Пример представления списка

Рис.5.17. Пример представления списка элементами одного формата


5.4.3. Операции обработки списков

Базовыми операциями при обработке списков являются операции (функции): car, cdr, cons и atom.

Операция car в качестве аргумента получает список (указатель на начало списка). Ее возвращаемым значением является первый элемент этого списка (указатель на первый элемент). Например:

  • если X - список (2,6,4,7), то car(X) - атом 2;
  • если X - список ((1,2),6), то car(X) - список (1,2);
  • если X - атом то car(X) не имеет смысла и в действительности не определено.

Операция cdr в качестве аргумента также получает список. Ее возвращаемым значением является остаток списка - указатель на список после удаления из него первого элемента. Например:

  • если X - (2,6,4), то cdr(X) - (6,4);
  • если X - ((1,2),6,5), то cdr(X) - (6,5);
  • если список X содержит один элемент, то cdr(X) равно nil.

Операция cons имеет два аргумента: указатель на элемент списка и указатель на список. Операция включает аргумент-элемент в начало аргумента-списка и возвращает указатель на получившийся список. Например:

  • если X - 2, а Y - (6,4,7), то cons(X,Y) - (2,6,4,7);
  • если X - (1,2), Y - (6,4,7), то cons(X,Y) - ((1,2),6,4,7).

Операция atom выполняет проверку типа элемента списка. Она должна возвращать логическое значение: true - если ее аргумент является атомом или false - если ее аргумент является подсписком.

В программном примере 5.11 приведена реализация описанных операций как функций языка PASCAL. Структура элемента списка, обрабатываемого функциями этого модуля определена в нем как тип litem и полностью соответствует рис.5.16. Помимо описанных операций в модуле определены также функции выделения памяти для дескриптора данных - NewAtom и для элемента списка - NewNode. Реали- зация операций настолько проста, что не требует дополнительных пояснений.

 {==== Программный пример 5.11 ====}
 { Элементарные операции для работы со списками }
 Unit ListWork;
 Interface
 type lpt = ^litem; { указатель на элемент списка }
   litem = record
       typeflg : char; { Char(0) - узел, иначе - код типа }
       down : pointer; { указатель на данные или на подсписок }
       next: lpt;  { указатель на текущем уровне }
       end;
 Function NewAtom(d: pointer; t : char) : lpt;
 Function NewNode(d: lpt) : lpt;
 Function Atom(l : lpt) : boolean;
 Function Cdr(l : lpt) : lpt;
 Function Car(l : lpt) : lpt;
 Function Cons(l1, l : lpt) : lpt;
 Function Append(l1,l : lpt) : lpt;
 Implementation
 {*** создание дескриптора для атома }
 Function NewAtom(d: pointer; t : char) : lpt;
  var l : lpt;
   begin   New(l);
    l^.typeflg:=t; { тип данных атома }
    l^.down:=d;    { указатель на данные }
    l^.next:=nil;   NewAtom:=l;
   end;
 {*** создание элемента списка для подсписка }
 Function NewNode(d: lpt) : lpt;
  var l : lpt;
    begin
    New(l);
    l^.typeflg:=Chr(0); { признак подсписка }
    l^.down:=d;    { указатель на начало подсписка }
    l^.next:=nil;
    NewNode:=l;
    end;
 {*** проверка элемента списка: true - атом, false - подсписок }
 Function Atom(l : lpt) : boolean;
   begin   { проверка поля типа }
   if l^.typeflg=Chr(0) then Atom:=false
   else Atom:=true;
   end;
 Function Car(l : lpt) : lpt;  {выборка 1-го элемента из списка }
   begin  Car:=l^.down; { выборка - указатель вниз }     end;
 Function Cdr(l : lpt) : lpt;{исключение 1-го элемента из списка}
   begin   Cdr:=l^.next; { выборка - указатель вправо }   end;
 {*** добавление элемента в начало списка }
 Function Cons(l1,l : lpt) : lpt;
  var l2 : lpt;
   begin  l2:=NewNode(l1); { элемент списка для добавляемого }
   l2^.next:=l;            { в начало списка }
   Cons:=l2;               { возвращается новое начало списка }
   end;
 {*** добавление элемента в конец списка }
 Function Append(l1,l : lpt) : lpt;
  var l2, l3 : lpt;
   begin
   l2:=NewNode(l1);   { элемент списка для добавляемого }
   { если список пустой - он будет состоять из одного эл-та }
   if l=nil then Append:=l2
   else begin   { выход на последний эл-т списка }
     l3:=l; while l3^.next <> nil do l3:=l3^.next;
     l3^.next:=l2;    { подключение нового эл-та к последнему }
     Append:=l;       { функция возвращает тот же указатель }
     end;  end;
 END.

В примере 5.11 в модуль базовых операций включена функция Append - добавления элемента в конец списка. На самом деле эта операция не является базовой, она может быть реализована с использованием описанных базовых операций, без обращения к внутренней структуре элемента списка, хотя, конечно, такая реализация будет менее быстродействующей. В программном примере 5.12 приведена реализация нескольких простых функций обработки списков, которые могут быть полезными при решении широкого спектра задач. В функциях этого модуля, однако, не используется внутренняя структура элемента списка.

 {==== Программный пример 5.12 ====}
 { Вторичные функции обработки списков }
 Unit ListW1;
 Interface
 uses listwork;
 Function Append(x, l : lpt) : lpt;
 Function ListRev(l, q : lpt) : lpt;
 Function FlatList(l, q : lpt) : lpt;
 Function InsList(x, l : lpt; m : integer) : lpt;
 Function DelList(l : lpt; m : integer) : lpt;
 Function ExchngList(l : lpt; m : integer) : lpt;
 Implementation
 {*** добавление в конец списка l нового элемента x }
 Function Append(x, l : lpt) : lpt;
   begin
   { если список пустой - добавить x в начало пустого списка }
   if l=nil then Append:=cons(x,l)
   { если список непустой
     - взять тот же список без 1-го эл-та - cdr(l);
     - добавить в его конец эл-т x;
     - добавить в начало 1-й эл-т списка }
   else Append:=cons(car(l),Append(x,cdr(l)));
 end; { Function Append }
 {*** Реверс списка l; список q - результирующий, при первом 
вызове он должен быть пустым }
 Function ListRev(l, q : lpt) : lpt;
   begin
   { если входной список исчерпан, вернуть выходной список }
   if l=nil then ListRev:=q
   { иначе: - добавить 1-й эл-т вх.списка в начало вых.списка,
 - реверсировать, имея вх. список без 1-го эл-та, а вых.список
 - с добавленным эл-том }
   else ListRev:=ListRev(cdr(l),cons(car(l),q));
 end; { Function ListRev }
 {*** Превращение разветвленного списка l в линейный; список q
 - результирующий, при первом вызове он должен быть пустым }
 Function FlatList(l, q : lpt) : lpt;
   begin
   { если входной список исчерпан, вернуть выходной список }
   if l=nil then FlatList:=q
   else
    { если 1-й эл-т вх. списка - атом, то
     - сделать "плоской" часть вх. списка без 1-го эл-та;
     - добавить в ее начало 1-й эл-т }
    if atom(car(l)) then
      FlatList:=cons(car(l),FlatList(cdr(l),q))
    { если 1-й эл-т вх. списка - подсписок, то
     - сделать "плоской" часть вх.списка без 1-го эл-та;
     - сделать "плоским" подсписок 1-го эл-та }
    else FlatList:=FlatList(car(l),FlatList(cdr(l),q));
 end; { Function FlatList }
 {*** вставка в список l элемента x на место с номером m
 ( здесь и далее нумерация эл-тов в списке начинается с 0 ) }
 Function InsList(x, l : lpt; m : integer) : lpt;
   begin
   { если m=0, эл-т вставляется в начало списка }
   if m=0 then InsList:=cons(x,l)
   { если список пустой, он и остается пустым }
   else if l=nil then InsList:=nil
   { - вставить эл-т x на место m-1 в список без 1-го эл-та;
     - в начало полученного списка вставить 1-й эл-т }
   else InsList:=cons(car(l),InsList(x,cdr(l),m-1));
 end; { Function InsList }
 {*** удаление из списка l на месте с номером m }
 Function DelList(l : lpt; m : integer) : lpt;
   begin
   { если список пустой, он и остается пустым }
   if l=nil then DelList:=nil
   { если m=0, эл-т удаляется из начала списка }
   else if m=0 then DelList:=cdr(l)
   { - удалить эл-т x на месте m-1 в список без 1-го эл-та;
     - в начало полученного списка вставить 1-й эл-т }
   else DelList:=cons(car(l),DelList(cdr(l),m-1));
 end; { Function DelList }
 {*** перестановка в списке l эл-тов местах с номерами m и m+1 }
 Function ExchngList(l : lpt; m : integer) : lpt;
   begin            { если список пустой, он и остается пустым }
   if l=nil then ExchngList:=nil
   else   if m=0 then
{если m=0, а следующего эл-та нет, список остается без изменений}
       if cdr(l)=nil then ExchngList:=l
{ если m=0 ( обмен 0-го и 1-го эл-тов):
- берется список без двух 1-ых эл-тов - cdr(cdr(l));
- в его начало добавляется 0-й эл-т;
- в начало полученного списка добавляется 1-й эл-т - car(cdr(l))}
     else ExchngList:= cons(car(cdr(l)),cons(car(l),cdr(cdr(l))))
    else ExchngList:=cons(car(l),ExchngList(cdr(l),m-1));
 end; { Function ExchngList }
 END.

Для облегчения читателю задачи самостоятельного исследования примера первые две его функции мы разберем подробно. Поскольку в функциях этого примера широко используются вложенные вызовы, в том числе и рекурсивные, в нижеследующих разборах описание каждого следующего вложенного вызова сдвигается вправо.

Функция Append добавляет элемент x в конец списка l. Рассмотрим ее выполнение на примере вызова: Append(4,(1,2,3)).

Поскольку аргумент-список не пустой, выполняется ветвь else. Она содержит оператор:

             Append:=cons(car(l),Append(x,cdr(l)));

Важно точно представить себе последовательность действий по выполнению этого оператора:

  • car(l) = 1;
  • cdr(l) = (2,3);
  • Append(4,(2,3))) - при этом рекурсивном вызове выполнение вновь пойдет по ветви else, в которой:
    • car(l) = 2;
    • cdr(l) = (3);
    • Append(4,(3))) - выполнение вновь пойдет по ветви else, в которой:
      • car(l) = 3;
      • cdr(l) = nil;
      • Append(4,nil) - в этом вызове список-аргумент пустой, поэтому выполнится Append:=cons(4,nil) и вызов вернет список: (4);
      • cons(car(l),Append(x,cdr(l))) - значения аргументов функции cons - для этого уровня вызовов: cons(3,(4)) = (3,4);
      • на этом уровне Append возвращает список (3,4);
      • cons(car(l),Append(x,cdr(l))) - на этом уровне: cons(2,(3,4)) = (2,3,4);
      • на этом уровне Append возвращает список (2,3,4);
      • cons(car(l),Append(x,cdr(l))) - на этом уровне: cons(1,(2,3,4)) = (1,2,3,4);
      • на этом уровне Append возвращает список (1,2,3,4).

Функция ListRev выполняет инвертирование списка - изменения порядка следования его элементов на противоположный. При обращении к функции ее второй аргумент должен иметь значение nil. Пример: ListRev(1,(2,3),4),nil).

Входной список не пустой, поэтому выполнение идет по ветви else, где:

             ListRev:=ListRev(cdr(l),cons(car(l),q));

Последовательность действий:

  • cdr(l) = ((2,3),4);
  • car(l) = 1;
  • cons(car(l),q) = (1) - список q при этом - пустой;
  • рекурсивный вызов ListRev( ((2,3),4), (1)):
    • cdr(l) = (4);
    • car(l) = (2,3);
    • cons(car(l),q) = ((2,3),1) - список q - (1);
    • рекурсивный вызов ListRev((4), ((2,3),1)):
      • cdr(l) = nil;
      • car(l) = 4;
      • cons(car(l),q) = (4,(2,3),1);
      • рекурсивный вызов ListRev(nil, (4,(2,3),1)):
        • поскольку исходный список пустой, вызов возвращает список: (4,(2,3),1);
      • вызов возвращает список: (4,(2,3),1);
    • вызов возвращает список: (4,(2,3),1);
  • вызов возвращает список: (4,(2,3),1).

В программном примере 5.13 применение ветвящихся списков показано для решения более прикладной задачи. Представленная здесь программа - калькулятор, она вычисляет значение введенного арифметического выражения, составляющими которого могут быть целые числа, знаки четырех арифметических операций и круглые скобки. Для упрощения примера мы ввели следующие ограничения:

  • вся арифметика - целочисленная;
  • программа не проверяет правильность исходной записи;
  • в выражении не допускается унарный минус.

 {==== Программный пример 5.13 ====}
 { Калькулятор. Вычисление арифметических выражений }
 program Calc;
 Uses ListWork;
 type cptr = ^char;
      iptr = ^ integer;
 const { цифровые символы }
      digits : set of char = ['0'..'9'];
      { знаки операций с высоким приоритетом }
      prty : set of char = ['*','/'];
 var s : string;   { исходная строка }
     n : integer;  { номер текущего символа в исх. строке }
{*** Представление исходной строки в списочной форме }
Function Creat_Lst : lpt;
 var lll : lpt;   { указатель на начало текущего списка }
     s1 : char;   { текущий символ строки }
     st : string; { накопитель строки-операнда }
   {* Создание атома для Integer }
   Procedure NewInt;
   var ip : iptr; cc : integer;
     begin
     if Length(st) > 0 then begin
       { если в st накоплено цифровое представление числа,
оно переводится в тип integer, для него создается атом и 
записывается в конец списка }
       New(ip); Val(st,ip^,cc);
       lll:=Append(NewAtom(ip,'I'),lll);
       st:='';  { накопитель строки сбрасывается }
      end;  end; { Procedure NewInt }
   Procedure NewChar;      { Создание атома для Char }
   var cp : cptr;
     begin  { выделяется память для 1 символа, в  ней 
сохраняется  значение  s1, для  него  создается  атом, 
записывается в конец списка}
     New(cp); cp^:=s1;
     lll:=Append(NewAtom(cp,'C'),lll);
   end; { Procedure NewChar }
   begin  { Function Creat_Lst }
   { исходный список пустой, накопитель строки - пустой }
   lll:=nil;  st:='';
   while n <= length(s) do begin  { цикл до конца исходной строки }
     s1:=s[n]; n:=n+1;
     case s1 of
       '(' : { начало скобочного подвыражения: для него создается 
новый  список  -  Creat_Lst,  который оформляется как подсписок - 
NewNode и добавляется в конец текущего списка - Append }
         lll:=Append(NewNode(Creat_Lst),lll);
       ')' : { конец скобочного выражения - последнее число в  
скобках добавляется в конец текущего списка и текущий  список
сформирован - конец функции }
          begin
            NewInt; Creat_Lst:=lll; Exit;
            end;
       else  {begin} { цифра или знак операции }
          if s1 in Digits then { цифры накапливаются в st }
            st:=st+s1
          else begin { знак операции }
            NewInt;  { созд. атом для ранее накопленного числа }
            NewChar; { созд. атом для знака }
        end;   {     end;}    end;  { case }    end;  { while }
   NewInt; { созд. атом для ранее накопленного числа }
   Creat_Lst:=lll;
 end; { Function Creat_Lst }
 {*** Выделение в подсписки высокоприоритетных операций }
 Function FormPrty(l : lpt) : lpt;
  var op1, op, op2 : lpt; { 1-й операнд, знак, 2-й операнд }
      l2,l3 : lpt;
      cp: ^char;
    begin
    l2:=nil; { выходной список пустой }
    { выделение 1-го операнда }
    op1:=car(l);  l:=cdr(l);
    { если 1-й операнд - подсписок - обработка подсписка }
    if not atom(op1) then op1:=FormPrty(op1);
    while l<>nil do begin  { до опустошения исходного списка }
      { выделение знака операции }
      op:=car(l);  l:=cdr(l);
      { выделение 2-го операнда }
      op2:=car(l); l:=cdr(l);
      { если 2-й операнд - подсписок - обработка подсписка }
      if not atom(op2) then op2:=FormPrty(op2);
      if cptr(op^.down)^ in prty then
        { если знак операции приоритетный, то создается подсписок:
1-й операнд, знак, 2-й операнд, этот подсписок далее является 1-ым
операндом }
        op1:=cons(op1,cons(op,cons(op2,nil)))
      else begin { если знак неприоритетный, 1-й операнд и знак
записываются в выходной список, 2-й операнд далее является 1-ым
операндом }
        l2:=Append(op,Append(op1,l2));
        op1:=op2;
     end;  end;
    FormPrty:=Append(op1,l2); { последний  операнд  добавляется в
выходной список }
 end; { Function FormPrty }
 {*** Вычисление выражения }
 Function Eval(l : lpt) : integer;
 var op1, op, op2 : lpt;
  begin
    { выделение 1-го операнда }
    op1:=car(l);  l:=cdr(l);
    { если 1-й операнд - подсписок - вычислить его выражение }
    if not atom(op1) then iptr(op1^.down)^:=Eval(op1);
    while l <> nil do begin
      { выделение знака операции }
      op:=car(l);  l:=cdr(l);
      { выделение 2-го операнда }
      op2:=car(l); l:=cdr(l);
      { если 2-й операнд - подсписок - вычислить его выражение }
      if not atom(op2) then iptr(op2^.down)^:=Eval(op2);
      { выполнение операции, результат - в op1 }
      case cptr(op^.down)^ of
        '+' : iptr(op1^.down)^:=iptr(op1^.down)^+iptr(op2^.down)^;
        '-' : iptr(op1^.down)^:=iptr(op1^.down)^-iptr(op2^.down)^;
        '*' : iptr(op1^.down)^:=iptr(op1^.down)^*iptr(op2^.down)^;
        '/' : iptr(op1^.down)^:=iptr(op1^.down)^ div iptr(op2^.down)^;
        end;
      end;
    Eval:=iptr(op1^.down)^; { возврат последнего результата }
 end; { Function Eval }
 {*** Главная программа }
 var l : lpt;
   begin
   write('>'); readln(s);  { ввод исходной строки }
   { формирование списка }
   n:=1; l:=Creat_Lst;
   { выделение приоритетных операций }
   l:=FormPrty(l);
   { вычисление и печать результата }
   writeln(s,'=',Eval(l));
 END.

Выполнение программы состоит во вводе строки, представляющей исходное выражение и последовательных обращений к трем функциям: Creat_Lst, FormPrty и Eval.

Функция Creat_Lst преобразует исходную строку в список. В функции поэлементно анализируются символы строки. Различаемые символы: левая круглая скобка, правая скобка, знаки операций и цифры. Цифровые символы накапливаются в промежуточной строке. Когда встречается символ-разделитель - правая скобка или знак операции накопленная строка преобразуется в число, для него создается атом с типом 'I' и включается в конец списка. Для знака операции создается атом с типом 'C' и тоже включается в конец списка. Левая скобка приводит к рекурсивному вызову Creat_Lst. Этот вызов формирует список для подвыражения в скобках, формирование списка заканчивается при появлении правой скобки. Для сформированного таким образом списка создается узел, и он включается в основной список как подсписок. Так, например, для исходной строки:

                         5+12/2-6*(11-7)+4

функцией Creat_Lst будет сформирован такой список:

                 (5,+,12,/,2,-,6,*,(11,-,7),+,4)

Следующая функция - FormPrty - выделяет в отдельные подсписки операции умножения и деления, имеющие более высокий приоритет, и их операнды. Функция просматривает список и выделяет в нем последовательные тройки элементов "операнд-знак-операнд". Если один из операндов является подсписком, то он обрабатывается функцией FormPrty. Если знак является одним из приоритетных знаков, то из тройки формируется подсписок, который становится первым операндом для следующей тройки. Если знак не приоритетный, то второй операнд тройки становится первым для следующей тройки. Список нашего примера после обработки его функцией FormPrty превратится в:

               (5,+,(12,/,2),-,(6,*,(11,-,7)),+,4)

Наконец, функция Eval выполняет вычисления. Она во многом похожа на функцию FormPrty: в ней также выделяются тройки "операнд 1- 0знак-операнд". Если один или оба операнда являются подсписками, то сначала вычисляются эти подсписки и заменяются на атомы - результаты вычисления. Если оба операнда - атомы, то над ними выполняется арифметика, задаваемая знаком операции. Поскольку в первую очередь вычисляются подсписки, то подвыражения, обозначен- ные скобками в исходной строке, и операции умножения и деления выполняются в первую очередь. Для нашего примера порядок вычислений будет таков:

     12 / 2 = 6; 5 + 6 = 11; 11 - 7 = 4; 6 * 4 = 24;
     24 + 4 = 28; 11 - 28 = -17

5.5. Язык программирования LISP

LISP является наиболее развитым и распространенным языком обработки списков. "Идеология" и терминология этого языка в значительной степени повлияла на общепринятые подходы к обработке списков и использовалась и нами в предыдущем изложении. Все данные в LISP представляются в виде списков, структура элементсписка соответствует рис.5.15. LISP обеспечивает базовые функции обработки списков - car, cdr, cons, atom. Также многие вторичные функции реализованы в языке как базовые - для повышения их эффективности. Помимо чисто списковых операций в языке обеспечиваются операции для выполнения арифметических, логических операций, отношения, присваивания, ввода-вывода и т.д. Операция cond обеспечивает ветвление.

Сама LISP-программа представляется как список, записанный в скобочной форме. Элементами простого программного списка является имя операции/функции и ее параметры. Параметрами могут быть в свою очередь обращения к функциям, которые образуют подсписки. Как правило, вся программа на LISP представляет собой единственное обращение к функции с множеством вложенных обращений - рекурсивных или к другим функциям. Поэтому программирование на языке LISP часто называют "функциональным программированием". Функции, приведенные нами в примере 5.11 являются переложением на язык PASCAL их LISP-реализаций.

Системы программирования LISP строятся и как компиляторы, и как интерпретаторы. Однако, независимо от подхода к построению системы программирования, она обязательно включает в себя "сборку мусора" (см.раздел 5.7). Обратите внимание на то, что в примере 5.11, представляя PASCAL-реализацию операций языка LISP, мы в некоторых функциях выделяли память, но нигде ее не освобождали. Система программирования LISP автоматически следит за использованием памяти и обеспечивает ее освобождение.

Другие языки обработки списков, например IPL-V, COMMIT в большей мере ориентированы на решение прикладных задач, а не на обработку абстрактных списков, хотя использование списковых структур заложено в основы в их реализации.


5.6. Управление динамически выделяемой памятью

Динамические структуры по определению характеризуется непостоянством и непредсказуемостью размера. Поэтому память под отдельные элементы таких структур выделяется в момент, когда они "начинают существовать" в процессе выполнения программы, а не вовремя трансляции. Когда в элементе структуры больше нет необходимости, занимаемая им память освобождается.

В современных вычислительных средах большая часть вопросов, связанных с управлением памятью решается операционными системами или системами программирования. Для программиста прикладных задач динамическое управление памятью либо вообще прозрачно, либо осуществляется через достаточно простой и удобный интерфейс стандартных процедур/функций. Однако, перед системным программистом вопросы управления памятью встают гораздо чаще. Во-первых, эти вопросы в полном объеме должны быть решены при проектировании операционных систем и систем программирования, во-вторых, некоторые сложные приложения могут сами распределять память в пределах выделенного им ресурса, наконец в-третьих, знание того, как в данной вычислительной среде распределяется память, позволит программисту построить более эффективное программное изделие даже при использовании интерфейса стандартных процедур.

В общем случае при распределении памяти должны быть решены следующие вопросы:

  • способ учета свободной памяти;
  • дисциплины выделения памяти по запросу;
  • обеспечение утилизации освобожденной памяти.

В распоряжении программы обычно имеется адресное пространство, которое может рассматриваться как последовательность ячеек памяти с адресами, линейно возрастающими от 0 до N. Какие-то части этого адресного пространства обычно заняты системными программами и данными, какие-то - кодами и статическими данными самой программы, оставшаяся часть доступна для динамического распределения. Обычно доступная для распределения память представляет собой непрерывный участок пространства с адресными границами от n1 до n2. В управлении памятью при каждом запросе на память необходимо решать, по каким адресам внутри доступного участка будет располагаться выделяемая память.

В некоторых системах программирования выделение памяти автоматизировано полностью: система не только сама определяет адрес выделяемой области памяти, но и определяет момент, когда память должна выделяться. Так, например, выделяется память под элементы списков в языке LISP, под символьные строки в языках SNOBOL и REXX. В других системах программирования - к ним относится большинство универсальных процедурных языков программирования - моменты выделения и освобождения памяти определяются программистом. Программист должен выдать запрос на выделение/освобождение памяти при помощи стандартной процедуры/функции - ALLOCATE/FREE в PL/1, malloc/free в C, New/Dispose в PASCAL и т.п. Система сама определяет размещение выделяемого блока и функция выделения памяти возвращает его адрес. Наконец, в уже названных выше задачах системного программирования программист зачастую должен определить также и адрес выделяемой области.

Память всегда выделяется блоками - т.е. обязательно непрерывными последовательностями смежных ячеек. Блоки могут быть фиксированной или переменной длины. Фиксированный размер блока гораздо удобнее для управления: в этом случае вся доступная для распределения память разбивается на "кадры", размер каждого из которых равен размеру блока, и любой свободный кадр годится для удовлетворения любого запроса. К сожалению, лишь ограниченный круг реальных задач может быть сведен к блокам фиксированной длины.

Одной из проблем, которые должны приниматься во внимание при управлении памятью является проблема фрагментации (дробления) памяти. Она заключается в возникновении "дыр" - участков памяти, которые не могут быть использованы. Различаются дыры внутренние и внешние. Внутренняя дыра - неиспользуемая часть выделенного блока, она возникает, если размер выделенного блока больше запрошенного. Внутренние дыры характерны для выделения памяти блоками фиксированной длины. Внешняя дыра - свободный блок, который в принципе мог бы быть выделен, но размер его слишком мал для удовлетворения запроса. Внешние дыры характерны для выделения блоками переменной длины. Управление памятью должно быть построено таким образом, чтобы минимизировать суммарный объем дыр.

Система управления памятью должна прежде всего "знать", какие ячейки имеющейся в ее распоряжении памяти свободны, а какие - заняты. Методы учета свободной памяти основываются либо на принципе битовой карты, либо на принципе списков свободных блоков.

В методах битовой карты создается "карта" памяти - массив бит, в котором каждый однобитовый элемент соответствует единице доступной памяти и отражает ее состояние: 0 - свободна, 1 - занята. Если считать единицей распределения единицу адресации - байт, то сама карта памяти будет занимать 1/8 часть всей памяти, что делает ее слишком дорогостоящей. Поэтому при применении методов битовой карты обычно единицу распределения делают более крупной, например, 16 байт. Карта, таким образом, отражает состояние каждого 16-байтного кадра. Карта может рассматриваться как строка бит, тогда поиск участка памяти для выделения выполняется как поиск в этой строке подстроки нулей требуемой длины.

В другой группе методов участки свободной памяти объединяются в связные списки. В системе имеется переменная, в которой хранится адрес первого свободного участка. В начале первого свободного участка записывается его размер и адрес следующего свободного участка. В простейшем случае список свободных блоков никак не упорядочивается. Поиск выполняется перебором списка.

Дисциплины выделения памяти решают вопрос: какой из свободных участков должен быть выделен по запросу. Выбор дисциплины распределения не зависит от способа учета свободной памяти. Две основные дисциплины сводятся к принципам "самый подходящий" и "первый подходящий". По дисциплине "самый подходящий" выделяется тот свободный участок, размер которого равен запрошенному или превышает его на минимальную величину. По дисциплине "первый подходящий" выделяется первый же найденный свободный участок, размер которого не меньше запрошенного. При применении любой дисциплины, если размер выбранного для выделения участка превышает запрос, выделяется запрошенный объем памяти, а остаток образует свободный блок меньшего размера. В некоторых системах вводится ограничение на минимальный размер свободного блока: если размер остатка меньше некоторого граничного значения, то весь свободный блок выделяется по запросу без остатка. Практически во всех случаях дисциплина "первый подходящий" эффективнее дисциплины "самый подходящий". Это объясняется во-первых, тем, что при поиске первого подходящего не требуется просмотр всего списка или карты до конца, во-вторых, тем, что при выборе всякий раз "самого подходящего" остается больше свободных блоков маленького размера - внешних дыр.

Когда в динамической структуре данных или в отдельном ее элементе нет больше необходимости, занимаемая ею память должна быть утилизована, т.е. освобождена и сделана доступной для нового распределения. В тех системах, где память запрашивается программистом явным образом, она и освобождена должна быть явным образом. Даже в некоторых системах, где память выделяется автоматически, она освобождается явным образом (например, операция DROP в языке REXX). В таких системах, конечно, задача утилизации решается просто. При представлении памяти на битовой карте достаточно просто сбросить в 0 биты, соответствующие освобожденным кадрам. При учете свободной памяти списками блоков освобожденный участок должен быть включен в список, но одного этого недостаточно. Следует еще позаботиться о том, чтобы при образовании в памяти двух смежных свободных блоков они слились в один свободный блок суммарного размера. Задача слияния смежных блоков значительно упрощается при упорядочении списка свободных блоков по адресам памяти - тогда смежные блоки обязательно будут соседними элементами этого списка.

Задача утилизации значительно усложняется в системах, где нет явного освобождения памяти: тогда на систему ложится задача определения того, какие динамические структуры или их элементы уже не нужны программисту. Один из методов решения этой задачи предполагает, что система не приступает к освобождению памяти до тех пор, пока свободной памяти совсем не останется. Затем все зарезервированные блоки проверяются и освобождаются те из них, которые больше не используются. Такой метод называется "сборкой мусора". Программа, сборки мусора вызывается тогда, когда нет возможности удовлетворить некоторый частный запрос на память, или когда размер доступной области памяти стал меньше некоторой заранее определенной границы. Алгоритм сборки мусора обычно бывает двухэтапным. На первом этапе осуществляется маркировка (пометка) всех блоков, на которые указывает хотя бы один указатель. На втором этапе все неотмеченные блоки возвращаются в свободный список, а метки стираются. Важно, чтобы в момент включения сборщика мусора все указатели были установлены на те блоки, на которые они должны указывать. Если необходимо в некоторых алгоритмах применять методы с временным рассогласованием указателей, необходимо временно отключить сборщик мусора - пока имеется такое рассогласование. Один из самых серьезных недостатков метода сборки мусора состоит в том, что расходы на него увеличиваются по мере уменьшения размеров свободной области памяти.

Другой метод - освобождать любой блок, как только он перестает использоваться. Он обычно реализуется посредством счетчиков ссылок - счетчиков, в которых записывается, сколько указателей на данный блок имеется в данный момент времени. Когда значение счетчика становится равным 0, соответствующий блок оказывается недоступным и, следовательно, не используемым. Блок возвращается в свободный список. Такой метод предотвращает накопление мусора, не требует большого числа оперативных проверок во время обработки данных. Однако и у этого метода есть определенные недостатки. Вопервых, если зарезервированные блоки образуют циклическую структуру, то счетчик ссылок каждого из них не равен 0, когда все связи, идущие извне блоков в циклическую структуру, будут уничтожены. Это приводит к появлению мусора. Существуют различные возможности устранить этот недостаток: запретить циклические и рекурсивные структуры; отмечать циклические структуры флажками, и обрабатывать их особым образом; потребовать, чтобы любая циклическая структура всегда имела головной блок, счетчик циклов которого учитывал бы только ссылки от элементов, расположенных вне цикла, и чтобы доступ ко всем блокам этой структуры осуществлялся только через него. Во-вторых, требуются лишние затраты времен и памяти на ведение счетчиков ссылок.

В некоторых случаях может быть полезен метод восстановления ранее зарезервированной памяти, называемый уплотнением. Уплотнение осуществляется путем физического передвижения блоков данных с целью сбора всех свободных блоков в один большой блок. Преимущество этого метода в том, что после его применения выделение памяти по запросам упрощается. Единственная серьезная проблема, возникающая при использовании метода - переопределение указателей. Механизм уплотнения использует несколько просмотров памяти. Сначала определяются новые адреса всех используемых блоков, которые были отмечены в предыдущем проходе, а затем во время следующего просмотра памяти все указатели, связанные с отмеченными блоками, переопределяются. После этого отмеченные блоки переставляются. Механизма освобождения памяти в методе восстановления совсем нет. Вместо него используется механизм маркировки, который отмечает блоки, используемые в данный момент. Затем, вместо того, чтобы освобождать каждый не отмеченный блок путем введения в действие механизма освобождения памяти, помещающего этот блок в свободный список, используется уплотнитель, который собирает неотмеченные блоки в один большой блок в одном конце области памяти. Недостаток метода в том, что из-за трех просмотров памяти велики затраты времени. Однако повышенная скорость резервирования в определенных условиях может компенсировать этот недостаток.

Практическая эффективность методов зависит от многих параметров, таких как частота запросов, статистическое распределение размеров запрашиваемых блоков, способ использования системы - групповая обработка или стратегия обслуживания при управлении вычислительным центром.

Copyright © Eugene, 2007
e-mail: webmaster@ITDom.info
Rambler's Top100 Рейтинг@Mail.ru